پیش‌بینی بارش ماهانه با مدل ترکیبی شبکه ‌عصبی مصنوعی-موجک و مقایسه با مدل شبکه‌ عصبی ‌مصنوعی

Authors

  • ، امیر پور حقی مهندسی منابع آب ،دانشکده علوم آب، دانشگاه شهید چمران اهواز
  • اباذر سلگی مهندسی منابع آب ،دانشکده علوم آب، دانشگاه شهید چمران
  • حمیدرضا خدا بخشی ، معاون طرح و توسعه شبکه‌های آبیاری و زهکشی سازمان آب و برق خوزستان
  • حیدر زارعی استادیار گروه هیدرولوژی و منابع آب دانشگاه شهید چمران
Abstract:

بدون شک اولین قدم در مدیریت رودخانه پیش­بینی بارش سطح حوضه آبریز می­باشد. با این حال، با توجه به بالا بودن خاصیت تصادفی فرآیندها، بسیاری از مدل­ها هنوز هم به منظور تعریف چنین پدیدة پیچیده­ای در زمینه مهندسی هیدرولوژیک توسعه داده می­شوند. اخیراً شبکه­های ­عصبی ­مصنوعی به عنوان یک برون­یابی و درون‌یابی غیرخطی گسترده توسط هیدرولوژیست­ها مورد استفاده قرار می­گیرد. در پژوهش حاضر، تجزیه و تحلیل­ موجک به صورت ترکیب با شبکه عصبی مصنوعی و مقایسه با شبکه­ عصبی ­مصنوعی برای پیش­بینی بارش ایستگاه وراینه در شهرستان نهاوند انجام شد. برای این منظور، سری زمانی اصلی با استفاده از تئوری موجک به چندین زیرسیگنال زمانی تجزیه شد، پس از آن این زیرسیگنال­ها به عنوان داده­های ورودی به شبکه­ عصبی­ مصنوعی برای پیش­بینی بارش ماهانه استفاده شد. نتایج به دست آمده نشان داد که با توجه به ضریب همبستگی 92/0 و میانگین مربعات خطای 002/0 مدل ترکیبی شبکه­ عصبی مصنوعی-موجک، عملکرد این مدل نسبت به مدل شبکه عصبی مصنوعی با ضریب همبستگی 75/0 و میانگین مربعات خطای 003/0 بهتر می­باشد و می­تواند برای پیش­بینی بارش کوتاه مدت و بلند مدت استفاده شود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ریزمقیاس کردن مکانی – زمانی سری های زمانی بارش با استفاده از مدل ترکیبی موجک – شبکه عصبی مصنوعی

با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک - شبکه عصبی مصنوعی (WANN)...

full text

پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی AR...

full text

مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک

این مطالعه تلاشی است در جهت به­کارگیری ترکیب مدل شبکه­ی عصبی پویا و تجزیه­ی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیش­بینی متغیر مذکور می­باشد. جهت تحقق این مهم، از داده­های سری­زمانی ماهانه­ی نرخ ارز طی بازه­ی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدل­سازی­ها استفاده شده و تعداد 27 مشاهده نیز جهت شبیه­سازی و یا به بیان دی...

full text

کاربرد مدل شبکه عصبی موجک در تخمین شاخص بارش استاندارد

خشکسالی یکی از پدیده‌های آب و هوایی است که در همه شرایط اقلیمی و در همه مناطق کره زمین به وقوع می‌پیوندد. پیش‌بینی خشکسالی نقش مهمی در طراحی و مدیریت منابع طبیعی، سیستم‌های منابع آب، تعیین نیاز آبی گیاه ایفا می‌نماید. بدین منظور در این پژوهش از داده‏های 4 ایستگاه باران‌سنجی نورآباد، بروجرد، الشتر و دورود واقع در استان لرستان، به بررسی خشکسالی با استفاده از شاخص بارش استاندارد SPI در مقیاس‏های ز...

full text

پیش‌بینی قیمت مسکن برای شهر اهواز: مقایسه مدل هدانیک با مدل شبکه عصبی مصنوعی

Determination and the estimation of the house price in urban areas has a great importance for governments, individual and state investors and common people. The mentioned estimation can be used in future planning and decision making of many urban and regional policies. In this regard, due to the vital importance of the house price in recent decades powerful and effective functions have been use...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 3

pages  18- 33

publication date 2016-05-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023